Directed evolution of ligand dependence: small-molecule-activated protein splicing.

نویسندگان

  • Allen R Buskirk
  • Yi-Ching Ong
  • Zev J Gartner
  • David R Liu
چکیده

Artificial molecular switches that modulate protein activities in response to synthetic small molecules would serve as tools for exerting temporal and dose-dependent control over protein function. Self-splicing protein elements (inteins) are attractive starting points for the creation of such switches, because their insertion into a protein blocks the target protein's function until splicing occurs. Natural inteins, however, are not known to be regulated by small molecules. We evolved an intein-based molecular switch that transduces binding of a small molecule into the activation of an arbitrary protein of interest. Simple insertion of a natural ligand-binding domain into a minimal intein destroys splicing activity. To restore activity in a ligand-dependent manner, we linked protein splicing to cell survival or fluorescence in Saccharomyces cerevisiae. Iterated cycles of mutagenesis and selection yielded inteins with strong splicing activities that highly depend on 4-hydroxytamoxifen. Insertion of an evolved intein into four unrelated proteins in living cells revealed that ligand-dependent activation of protein function is general, fairly rapid, dose-dependent, and posttranslational. Our directed-evolution approach therefore evolved small-molecule dependence in a protein and also created a general tool for modulating the function of arbitrary proteins in living cells with a single cell-permeable, synthetic small molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells.

Laboratory-created small-molecule-dependent inteins enable protein structure and function to be controlled posttranslationally in living cells. Previously we evolved inteins that splice efficiently in Saccharomyces cerevisiae only in the presence of the cell-permeable small molecule 4-hydroxytamoxifen (4-HT). In mammalian cells, however, these inteins exhibited lower splicing efficiencies and s...

متن کامل

Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein.

Inteins are naturally occurring protein elements that catalyze their own excision from within a larger protein together with the ligation of the flanking "extein" sequences. Previously we reported the directed evolution of an intein-based molecular switch in which intein splicing in yeast cells was made dependent on the cell-permeable small molecule 4-hydroxytamoxifen (4-HT). Here we show that ...

متن کامل

Tacrine-Flavonoid Quercetin Hybride as a MTDL Ligand against Alzheimer’s Disease with Metal Chelating and AChE, BChE, AChE-induced Aβ Aggregation Inhibition Properties: A Computational Study

AChE is an enzyme that is predominate in a healthy brain, while BChE is considered to play a minor role in regulating the levels of ACh (memory molecule) in the brain. In addition to setting the ACh level, these two enzymes also facilitate Aβ aggregation by forming stable complexes and participate in the abnormal phosphorylation of the tau protein, which also contribute to the development of Al...

متن کامل

A novel CUG(exp)·MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1.

Myotonic dystrophy type 1 (DM1) is caused by an expanded CUG repeat (CUG(exp)) that sequesters muscleblind-like 1 protein (MBNL1), a protein that regulates alternative splicing. CUG(exp) RNA is a validated drug target for this currently untreatable disease. Herein, we develop a bioactive small molecule (1) that targets CUG(exp) RNA and is able to inhibit the CUG(exp)·MBNL1 interaction in cells ...

متن کامل

Inhibition of Inducible Nitric Oxide Synthase Expression by a Novel Small Molecule Activator of the Unfolded Protein Response

The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 29  شماره 

صفحات  -

تاریخ انتشار 2004